سامانه اینترنتی سازمان فداییان خلق ایران (اکثریت)

GOL-768x768-1

۱ بهمن, ۱۴۰۴ ۰۸:۱۳

چهارشنبه ۱ بهمن ۱۴۰۴ - ۰۸:۱۳

پرستو فروهر؛ دادخواهی، تعقل مدنی و نه به بازتولید خشونت
پرستو فروهر، در این گفت‌وگو (با رادیو فردا) نه‌تنها صدای اعتراض به سبعیت کشتار حاکمان را بلندتر می‌کند، بلکه به صدای تعقل جامعهٔ مدنی ایران بدل می‌شود؛ صدایی که از...
۱ بهمن, ۱۴۰۴
تصویر نویسنده: پرستو فروهر
نویسنده: پرستو فروهر
اطلاعیه شورای سردبیری کار – رونمایی سامانه کار بین‌المللی به زبان‌های دیگر…
سامانه کار بین‌المللی در چهار زبان انگلیسی، آلمانی، فرانسوی، و ایتالیایی منتشر میشود. به باور ما این تنها سایت سیاسی چپ ایرانی است که با چنین امکاناتی به زبانهای دیگر...
۱ بهمن, ۱۴۰۴
تصویر نویسنده: شورای سردبیری کار
نویسنده: شورای سردبیری کار
رنج انباشته
امروز بازماندگانِ جان‌ به لب‌رسیده، غمگین و خشمگین، با زخم‌ها و سوزش‌ دلشان، هنوز ایستاده‌اند؛ زخمی ولی جان سخت و با دل‌هایی رنجور، ترک‌هایی ژرف... با امیدی که از بس...
۱ بهمن, ۱۴۰۴
تصویر نویسنده: زری
نویسنده: زری
نبردی که بهایش جان مردم بود
تاریخ ایران بارها نشان داده است که فاجعه فقط از دل استبداد حاکم زاده نمی‌شود؛ گاه از دل رهبری‌های منجی‌محور، شتاب‌زده و بی‌پاسخ‌گو در سوی مخالف نیز زاده می‌شود. همان‌گونه...
۱ بهمن, ۱۴۰۴
تصویر نویسنده: بهروز ورزنده
نویسنده: بهروز ورزنده
*درها را بسته‌اند*
گردابِ دود / به چشمِ آسمان می‌رود؛ / و قفلِ کوچه‌های بن‌بست / شکسته می‌شود. / انتظارِ پُرهراس ِ امروز  ِ ما، / دیوار و دریایِ خون، / فردا / در...
۳۰ دی, ۱۴۰۴
تصویر نویسنده: زری
نویسنده: زری
کتاب "زندگی عیسی" نقد مسیحیت بود.
اشتراوس میگفت نقد حقیقی دگم ها تاریخ آنان است و ریشه تاریخ دگم ها در تخیلات مسیحیان اولیه قرار داشت. در اسطوره سازی فرقه های مذهبی پیشین آگاهی علمی مدرن...
۳۰ دی, ۱۴۰۴
تصویر نویسنده: آرام بختیاری
نویسنده: آرام بختیاری
فراتر از ویتنام: زمانی برای شکستن سکوت
دکتر مارتین لوترکینگ: با در نظر گرفتن چنین فعالیت‌هایی است که سخنان جان اف کندی فقید دوباره به ذهن ما خطور می‌کند. پنج سال پیش او گفت: "کسانی که انقلاب...
۳۰ دی, ۱۴۰۴
تصویر نویسنده: دکتر مارتین لوتر کینگ
نویسنده: دکتر مارتین لوتر کینگ

فضازمانِ کوانتومی

بررسی‌های فضازمان کوانتومی نشان می‌دهند: ۱. یک حداقل طول در مقیاس پلانک وجود دارد. ۲. فیزیک فضازمان کوانتومی به‌عنوان بخش جدیدی از فیزیک، از نوع فیزیک کلاسیک و یا کوانتومی مفروض بر فضازمان نیست. ۳. اصل عدم قطعیت، بدون ملاحظه گرانش صحت ندارد. ۴. نظریه‌ جدید می‌تواند شیوه‌ی شکل‌گیری فضازمان را نشان دهد و میان دو نظریه، نسبیت عام و کوانتومی، هماهنگی و وحدت ایجاد کند.

                                                                             برلین ۲۰۲۵٫۱۲،۱

کوانتیزاسیونِ هندسه | اصلِ عدمِ قطعیت

Edward Witten۴                                      Lee Smolin۳                                         Abhay Ashtekar۲                      Roger Penrose۱

 Quantum spacetime

فضازمان  کلاسیک۵ِدرک ما از جها نِِ هستیِ راِ بشدت تغییرِِداده است. فضازما ن کوانتومی فراتر میرود و نشان میدهد که فضازمان نه پیش از بلکه پس از رویدادهای کوانتومیِ می آید ِو این که اصلِ عدمِِ قطعیت بدون درنظرگرفتن گرانش صحت ندارد.

فشرده

نظریه   فضازما ن  کوانتومی سعی در توصیف منشاء، شیوه ی شکل گیری و چیستی فضا و زمان از نواسانات کوانتومی، در راستای کوانتیزاسیون هندسه در مقیاس پلانک

(۳۵–۱۰ . ۱٫ˑ۶۱۶متر) دارد. این نظریه ، بعکس نظریه های موجود، یعنی نظریه نسبیت عام و نظریه کوانتومی، فضا و زمان را برای توصیف جهان هستی  پیشفرض  نمیکند. دیدگاهی که در صورت عملی شدن، به معنای ایجاد وحدت میان دو نظریه مزبور در شکل نظریه گرانش کوانتومی نیز میباشد.

دانش و تصویر کنونی ما  از جهان هستی متکی بر یافته هاییست که با یاری دو نظریه نامبرده با پیشفرض فضا و زمان بدست آمده اند. بی آنکه وجود و چیستی چنان پیشفرض مهم و تعیین کننده ای پیشاپیش  نشان داده شده باشد. این در حالی است که فضا و زمان برای دو نظریه مزبور نه فقط ابزاری برای توصیف رویدادهای طبیعی  به حساب میآیند، بلکه بدون چنان پیشفرضی امکان بنایشان نبود. در مقاله۵ گفتیم که اینشتین در سال ۱۹۱۶، یعنی یک سال پس از ارایه نظریه نسبیت عام، نظریه ای که فضازمان و میدان گرانشی را کمیت های یکسانی میداند، مینویسد:

“الزا م هم وردایی عام۵(general covariance)، آخرین بقایای عنیت فیزیک ی فضا و زمان را از بین میبرد.”۶

از آنجا که تمامی بخشهای شناخته شده ی فیزیک تا اندازه ای ویژگیهای کوانتومی دارند، میتوان تصور کرد که فضازمان نیز به عنوان نمو د  (تجلی) یک میدان فیزیکی از چنان ویژگیهایی برخوردار باشد.

اصل  عدم قطعیت هایزنبرگ میگوید، میتوان برای مثال مکان یک ذره را در یک مبدا ن الکترومغناطیسی با هر دقت دلخواهی اندازه گیری کرد. آیا این بیان درست است؟

در این مقاله می خواهیم پس از پیشگفتار و برشمردن مشکلات شناخته شده تاکنون در بنای نظریه فضازمان کوانتومی، بازنمودهایی (توضیحاتی) را در باره ی کوانتزاسیون هندسه ارایه دهیم تا در ادامه به بررسی شرایط  لازم و کافی برا ی اصل عد م  قطعیت بپردازیم.

 

یادآوری:

۱.  در مقاله   ’فضازمان کلاسیک‘۵ : با یافته های ۲۵قرن گذشته درباره فضازمان کلاسیک و لزوم اصلاح آنها آشنا شدیم.

۲. در مقاله ’معمّای فضازمان‘۷: به طرح مسئله ی فضازمان در رابطه با نظریه نسبیت عام و نظریه کوانتومی پرداختیم .

۳. در مقاله  ’محدودیت های شناخت فضازمان‘۸: محدودیتها را از جمله اختلاف در ساختارهای نظری ملاحظه کردیم .

 

پیشگفتار

در آغاز لازم میدانم نکته  مهمی  را که ماکس بورن، فیزیکدان آلمانی (۱۹۷۰ ـ۱۸۸۲) در خاطراتی از آلبرت اینشتین در یادنامه به مناسبت شصدمین سالگرد تولد ورنر فون هایزنبرگ بیان داشته، ذکر کنم. بورن مینویسد:

“پیش بینی های  علمی،  مستقیمن  به  «واقعیت»  اشاره  نمیکنند.  بلکه به دانش ما از واقعیت. یعنی، به  اصطلاح  «قوانین طبیعی» اجازه میدهند از دانش محدود و تقریبی  کنونی، در مورد یک وضعیت آینده نتیجه گیری کنیم که البته آن هم فقط به طور تقریبی قابل توصیف است.”

همانگونه که در بالا اشاره کردیم، فضا و زمان در نظریه های مطر ح حاضر، یعنی نظریه نسبیت عام و نظریه کوانتومی، پیشفرض شده اند، بی آنکه تعریف  قابل سنجشی از آنها ارایه شده باشد. روشن است که یک چنین روشی را نمیتوان از نظر علمی  رضایتبخش دانست، هرچند با نتایج چشمگیری همراه باشد. از اینرو، شناخت منشاء، شیوه ی شکل گیری و چیستی فضا و زمان امریست ضروری و اجتنابناپذیر.

در قرن بیستم، آلبرت اینشتین سعی در ایجاد وحدت میان میدا ن الکترومغناطیسی و میدا ن  گرانشی (فضازمان) داشت. از آن پس به اینسو فیزیکدانانی،  مانند جان ا. ویلر (John A. Wheeler) جان ه. شوارز(John H. Schwarz)، مای کل گرین (Michael Green)، ادوارد ویتن (Edward Witten)، راجر پنروز (Roger Penrose)، ابهی اشتکار (Abhay Ashtekar)، لی اسمولین (Lee Smolin)، ند جاکوبسن (Ted Jacobson) و کارلو روولی (Carlo Rovelli) سعی در ایجاد وحدت میان ۴ نیروی پایه ای فیزیک( نیروی هستهای قوی، هستهای ضعیف، الکترومغناطیسی و گرانشی) و  شناخت  فضازمان کردند. شناخته شده ترین مدل های نظری در این رابطه عبارتند از: نظریه گرانش کوانتومی و نظریه ریسمانها.

پژوهشها در راستای نظریه فضازمان کوانتومی همچنان ادامه دارد. اما، تاکنون جز موفقیتهای نسبی، مانند فضازمان کوانتومی حلقه ای (loop quantum gravity) آنهم فقط در شکل ۳بعُدی، به پاسخ  رضایتبخشی دست نیافتده ایم. از ده ه ی  هشتاد قرن گذشته  بیشترین امید معطوف به بنای  ’نظریه گرانش کوانتومی حلقه ای‘، یعنی  شکلگیری  فضا از نوسانات کوانتومی متشکل از واحدهای گسسته (هندسه  کواتومی) بود. اما، این امید اکنون همچون نظریه ریسمانها، با رکود مواجه شده است. شکی نیست که پژوهش در مقیاس پلانک، به ویژه به خاطر نبود شناخت از قوانین مربوطه بسیار دشوار است. با این حال، میتوان امیدوار بود از طریق پژوهش  سیاه چاله ها و اجسام کیهانی مشابه راه برای فهم یک چنان بخش مهم و بنیاد ی طبیعت هموار شود.

بی تردید، بنای نظریه فضازمان کوانتومی دشوار و زما نبر است. یک بخش از دشواری این مسئله به دیدگا ه های مختلف در نظریه نسبیت عام و نظریه کوانتومی نسبت به فضا و زمان و اصولن پیشفرض فضا و زمان در آنها برمیگردد. فضا و زمان در نظریه کوانتومی به عنوان یک پس زمینه  مستقل و غیرقابل تغییر و در نظریه نسبیت عام فر مپذیر به عنوان یک  متغیر پویا که مستقیمن با  ماده مرتبط است، درنظرگرفته شدند.  در مقابل، نظریه فضازمان کوانتومی از جمله سعی در برطرف کردن یک چنان وضعیت ناهنجار دارد. در عین حال، کامیابی در این امر به معنای هماهنگسازی (تطبیق) و وحدت دو نظریه نسبیت عام و کوانتومی نیز خواهد بود .

 

آنچه در حال حاضرمیدانیم

در حال حاضر، دانش ما از جهان هستی شامل یافته هایی میشود که عمدتن با یاری نظریه نسبیت عام و نظریه کوانتومی کسب شده اند. نظریه هایی که امکان کشف دنیای بی نهایت بزرگ  ماکروسکوپی با طول عمر حدود ۸٫۱۳ میلیارد سال از زمان پیدایش کیهان تاکنون و دنیای شگرف و بینهایت کوچک میکروسکوپی ذرات بنیادی را تا حدودی مهیا کرده اند. بیشک، در چنین عرصه گسترده ای مسایلی هستند که هنوز کشف نشده اند، از جمله و به ویژه مسئله فضازمان و همینطور آنچه به اصطلاح ماده تاریک و انرژی تاریک نامیده میشود. مسئله  اول، یعنی موضوع مقاله حاضر، مربوط به بخشی از طبیعت میشود که نمیتوان آن را براساس دانش و قوانینی که دو نظریه نسبیت و کوانتومی  برپایه آنها بنا شده اند بررسی و بنا کرد. زیرا، چنان قوانینی در مقیاس پلانک (۳۵–۱۰ . ۱٫ˑ۶۱۶متر)، یعنی بخش مربوط به فضازمان کوانتومی، کارایی خود را از دست میدهند. برای مثال، در ناحیه سیاهچاله ها، اجسام کیهانی مشابه و یا مراحل اولیه پیدایش کیهان .

مکانیک نیوتنی، نظریه نسبیت خاص و نظریه کوانتومی، همه با پیشفرض  فضازمان  ایستا به عنوان پس زمینه رویدادها بنا شده اند . در حالیکه فضازمان در نظریه نسبیت عام نه پیشفرض و ایستا بلکه پویا (دینامیکی) میباشد. از اینرو، یک مشکل مفهومی در ترکیب این نظریه ها ناشی از نقش زمان در آنهاست. زمان، در نظریه کوانتومی مطلق و جهانشمول پنداشته میشود، اما در نظریه نسبیت عام به عنوان یک متغیر  پویا که مستقیمن با ماده مرتبط است تلقی میشود.

 

مشکلا ت شناخته شده تاکنون در بنای نظریه فضازما ن کوانتومی

به نظر ،اختلاف در ساختا ر نظریه نسبیت عام و نظریه کوانتومی مانع از ایجاد وحدت میان این دو به یک نظریه واحد به نام نظریه فضازمان کوانتومی یا  نظریه گرانش کوانتومی است. به طور مشخص، مسایل تاکنون شناخته شده در این راستا عبارتند از:  ۱.  مسئله   زمان در  دو نظریه ی  نسبیت  عام  و کوانتومی  ۲. مسئله  تکینگی  در  نظریه نسبیت عام  ۳.  مسئله کوانتیزاسیون  نظریه نسبیت عام ۴. مسئله اصل عدم قطعیت در میدان الکترومغناطیسی ۵. نبود  امکان انداز ه گیری دقیق انرژیها در نظریه کوانتومی ۶. در دسترس نبودن انرژیهای لازم برای بررسی برهمکنشها در مقیاس پلانک ۷. مورد سوال بودن اعتبار عام  مسائلی مانند تقارن۹ و باز بهنجارش پذیری ۱۰ ۸. مسئله پیشفرض فضازمان در نظریه های کلاسیک و کوانتومی. ۹. مسئله تایید نظریه فضازمان کوانتومی و قوانین آن در تجربه، در صورت کامیابی در ارایه آنها.

در رابطه با نکات برشمرده، لازم است روی سه مطلب تاکید شود: ۱. نظریه نسبیت عام، میدان گرانشی و فضازمان را کمیتهای  فیزیکی یکسانی میداند.  اما، در عین حال،  همانگونه که در بالا گفتیم،  “الزا م   هموردایی  عام (general covariance)، آخرین بقایای عنیت  فیزیکی فضا و زمان را از بین میبرد.”۶ ۲. تما م  بخشهای شناخته شده ی فیزیک تا حدی ویژگی کوانتومی دارند. ازاینرو، به نظر این امر مهم در مورد فضازمان به عنوان نمود یک میدان فیزیکی نیز صدق میکند .۳. “توصیف فضازمان در شکل منیفلد شبه ریمانی (PseudoRiemannian manifold)، ریاضیات مربوط به نظریه نسبیت عام، نمیتواند بدون تغییر منجر به فضازمان گرانشی شود”.۱۱

اصل عدم قطعیت هایزنبرگ در میدان‌ِ الکترومغناطیسی؟        

اصل عدم قطعیت می‌گوید: نمی‌توان دو کمیت مکمل مانند مکان و تکانه (یا سرعت) یک ذره را هم‌زمان و با دقت دلخواه اندازه‌گیری کرد. به این معنا که هرچه دقتِ اندازه‌گیری یکی از آن دو کمیت‌ها بیش‌تر شود، دقتِ اندازه‌گیری کمیت دیگر کم‌تر می‌شود. البته لازم به تاکید است که این امر هیچ ربطی به ضعف ابزارهای اندازه‌گیری و یا سنجش‌گر ‌ندارد. یعنی، اصل عدم قطعیت یک ویژگی بسیار مهم و بنیادی دنیای کوانتومی، جهان هستی، است.

اعتبار اصل عدم قطعیت به هیچ‌وجه محدود به نظریه‌ کوانتومی‌ای‌ که اساس آن در دهه سومِ قرنِ گذشته، از جمله توسط هایزنبرگ، ریخته شد و در دهه‌های سپسین (بعدی) توسعه یافت، نمی‌شود. اما، موضوع مهمی که در این رابطه کمتر به آن توجه شده و می‌شود، نقشِ گرانش است. بازنمودها در باره‌ی اصل عدم قطعیت به ‌شکلی است که گویی این اصل فارغ از گرانش صحت دارد.

تاریخچه: در سال ۱۹۲۷ ورنر فون هایزنبرگ، اصل عدم قطعیت را کشف کرد. در سال ۱۹۳۱ لو لانداو (Lew D. Landau)، فیزیکدانِ روسی (۱۹۶۸ـ۱۹۰۸) در مقاله۱۱‌ با همکاری رودولف پیرلز (Rudolf Ernst Peierls) فیزیکدان آلمانی -بریتانیایی (۱۹۹۵ـ۱۹۰۷) براین نظر بود که اصل عدم قطعیت هایزنبرگ در میدان الکترومغناطیسی صحت ندارد. اصلی که می‌گوید، می‌توان برای مثال، مکان‌ یک ذره را با دقت دلخواه اندازه‌گیری کرد. اما، نیلز بوهر (Niels Bohr)، فیزیکدان دانمارکی (۱۹۶۲ـ۱۸۸۵) با همکاری لئون روزنفلد (Leon Rosenfeld)، فیزیکدان بلژیکی (۱۹۷۴ـ۱۹۰۴) در سال ۱۹۳۳ در مقاله۱۲ ادعا کردند که اصل عدم قطعیت هایزنبرگ در نظریه میدان الکترومغناطیسی صحت دارد.

در سال ۱۹۳۶ ماتوئی پتروویچ برونشتاین (Matwei Petrowitsch Bronstein) فیزیکدان روسی (۱۹۳۸ـ۱۹۰۶) واکاوی (تجزیه وتحلیل) بوهر ـ روزنفلد را تکرار می‌کند. اما، او بجای میدان الکترومغناطیسی، به کاوش میدان گرانشی می‌پردازد با ابن نتیجه که درکِ شهودی لانداو درست بود.۱۰ به این معنا ‌که درصورت صرف‌نظر نکردن از نظریه نسبیت عام (اثر گرانش)، نمی‌توان اندازه‌‌ی دقیق دلخواهی از مکان یک ذره‌ داشت. یعنی، اصل عدم قطعیت هایزنبرگ آن‌گونه تصور می‌شد و تجزیه و تحلیل بوهر ـ روزنفلد نشان ‌داد، صحت ندارد. به شیوه‌ی واکاوی و استدلال برونشتاین در دستیابی به این نتیجه بسیار مهم در زیر، پس از بازنمودهایی در باره‌ی کوانتزاسیون هندسه، می‌پردازیم.

 

کوانتزاسیون هندسه

برای آشنایی اولیه با مسئله‌ی کوانتزاسیون هندسه، یک حسم هندسی ساده مانند یک چهاروجهی کوچک را که الزامن نباید منظم باشد درنظرمی‌گیریم (تصویر۲). هندسه‌ی این جسم از جمله با طول اضلاع، مساحت سطوح، حجم، زوایای دو وجهی و زوایای رئوس سطوح مشخص شده است. مشخصاتی که جملگی ‌معنای توابع محلی میدان گرانشی را دارند. چهار بُردارِ علامت‌گذاری شده در تصویر۲ دارای ویژگی‌های زیر هستند: ۱ـ جمع بُردارها برابر با صفر است. ۲ـ بُردارها تمام اندازه‌های هندسی دیگر، مانند مساحت، حجم، زوایای بین رئوس سطوح و زوایای دووجهی را معین می‌کنند.

۳ـ مساحت هر سطح برابر با اندازه بُردارِ عمود بر آن (حاصل از ضرب بُرداری دو ضلع مربوطه) و ۴. حجم جسم چهاروجهی برابر با حاصلضرب سه‌گانه‌ی سه مساحت دلخواه است.

تصویر۲:  جسم هندس ی چهااروجهی بهعنوان بخشی از فضا با چهار برُدا ر عمود بر سطوح آن.۱۰

 

پس از این آشنایی فشرده (بدون شرح جزئیات مربوطه) با ویژگی‌های کلاسیکِ هندسه‌ی چهاروجهی، می‌پردازیم به کوانتیزاسیون آن‌ به‌عنوان مثالی برای کوانتیزاسیون هندسه (فضا). بررسی این مسئله برای درکِ فضازمانِ کوانتومی در راستای شناخت از ویژگی‌های کوانتومیِ کمیت‌های هندسی آن ضروریست.

گفتیم که در نظریه کوانتومی، اندازه‌گیری هم‌زمان و دقیقِ دو کمیت مکمل مانند مکان و تکانه (یا سرعت) یک ذره امکان ندارد (اصل عدم قطعیت). همین وضع در مورد بُردارهای عمود بر سطوح هندسه‌ی چهاروجهی، به‌عنوان کمیت‌های مکمل، نیز صدق می‌کند. به این معنا که اندازه‌گیری هم‌زمان و دقیق دو بُردار از چهار بُردارِ چهاروجهی امکان ندارد. در نتیجه، نمی‌توان فضا (در مثال ما فضای چهاروجهی) را به قطعات کوچک دلخواه تقسیم کرد. یعنی، حجم چهاروجهی فقط در گام‌های گسسته می‌تواند افزایش ‌یابد. و این به‌معنای آنست که فضا در بنیاد، کوانتیزه شده است. به عبارت دیگر، باور به پیوسته بودن فضا در دنیای کلاسیک (ماکروسکوپی) معنایی جز شناخت تقریبی از آن ندارد. باوری که به بهای چشم‌پوشی از تاثیر گرانش حاصل می‌شود. اما، در واقع “کمیت‌های طول، مساحت و حجم که آزاد از تاثیر گرانش باشند وجود ندارد. جالب است بدانیم که بررسی‌های نظری نشان می‌دهند، تعداد ’حدود ۱۰۱۰۰ کوانتومِ حجم‘ در یک سانتیمتر مکعب جا می‌شوند!”۱۰

 

استدلال برونشتاین و ردِ ادعای بوهر ـ روزنفلد

گفتیم که  لو لانداو معتقد بود، یک مکان‌یابی فضازمانی با دقت دلخواه در میدان الکترومغناطیسی در تضاد با اصل عدم قطعیت هایزنبرگ است. اما، نیلز بوهر و لئون روزنفلد براین نظر بودند که اصل عدم قطعیت هایزنبرگ در میدانِ الکترومغناطیسی صدق می‌کند. چندی بعد، ماتوئی پتروویچ برونشتاین نتیجه بررسی بوهر ـ روزنفلد را نه با واکاوی میدان الکترومغناطیسی بلکه با میدان گرانشی تکرار می‌کند. با ابن نتیجه که درکِ شهودی لانداو درست بود.۱۰ یعنی، درصورت چشم‌پوشی (انصراف) نکردن از اثرِ گرانش (از نظریه نسبیت عام)، اندازه‌گیری همزمان و دقیقِ دلخواهِ یک کمیت مکمل، برای مثال مکانِ یک ذره، ممکن نیست.

برای فهم نتیجه‌ بررسی برونشتاین لازم است با شیوه‌ی واکاوی و استدلال او که منجر به ردِ نتیجه کاوش (تجزیه و تحلیل) بوهر ـ روزنفلد شد، آشنا شویم و به‌بینیم او چگونه به‌یک چنان نتیجه مهمی دست‌یافته و چه راه‌حلی را ارایه می‌کند. به‌نظر، راه‌حلِ برونشتاین، ارایه شده در دهه سیِ قرن گذشته، اولین قدم مهم در بنای فضازمان کوانتومی است.

پیش از پرداختن به راه‌حل برونشتاین لازم است بازنمودهایی را، هرچند تکراری، در باره‌ی اصل عدم قطعیت هایزنبرگ یادآوری کنیم. اصل عدم قطعیت هایزنبرگ می‌گوید: نمی‌توان کمیت‌های مکملی (جفت‌های مشخصی از خواص فیزیکی) مانند مکان (x) و تکانه (p) (یا سرعت v) را هم‌زمان با دقت دلخواه اندازه‌گیری کرد. به بیان دیگر، افزایش دقت در اندازه‌گیری یکی از آن دو (برای مثال مکان x)، مترادف است با کاهش دقت در اندازه‌گیری کمیت دیگر (مانند تکانه p) و بعکس. این اصل یکی از اصول بنیادین نظریه کوانتومی و جهان هستی است و به محدودیت‌های سنجش‌گر و با ابزارهای سنجش مربوط نمی‌شود.

برای تعیین یک مکان‌ (localization) L، لازم استL   Δx باشد (Δx به‌معنای انحراف x) و از آنجاکه بیان ریاضیِ اصل عدم قطعیت به شکل ћ   ΔxΔpاست، می‌توان آن را به‌شکل Δp / ћ  Δx و یا L / ћ Δp . نیز نوشت (ћ ضریب پلانک، p تکانه و Δp انحرافِ تکانه). و چون میانگین  p۲بزرگتر از ۲(Δp) است، بنابراین p۲  (ћ /L)۲ می‌باشد. در نتیجه، تعیینِ دقیقِ یک مکان‌ نیازمند تکانه بالا، یعنی انرژی E بالا است (  به‌‌معنای کوچکتر،  به‌معنای بزرکتر): بنابر نظریه نسبیت عام، انرژی و جرم با هم نسبت مستقیم دارند. این نسبت با فرمول  معروف E = m c۲ نشان

داده می‌شود ( mجرم و c سرعت نور). نسبت مزبور، گویای آنست که هر نوع انرژی (برای مثال، انرژی الکترومغناطیسی، جنبشی و حرارتی) نوعی جرم گرانشی محسوب می‌شود. از طرف دیگر، ما می‌دانیم که جرم (یا ماده) فضازمان اطراف خود را دگرگون (تحریف) می‌کند. برای مثال، خمیدگی (انحنای) نور در نزدیکی خورشید بیان از دگرگونی فضای اطراف خورشید توسط جرم ستاره دارد. و هرچه جرم متمرکزتر باشد، به‌همان میزان نیز خمیدگی فضای اطراف آن شدیدتر است. تمرکز جرم می‌تواند چنان شدید باشد که جسمی مانند خورشید در شعاع R حدود ۳کیلومتر و یا زمین در شعاع حدود ۱سانتی‌‌متر به یک سیاه‌چاله تبدیل شوند. در این حالت، هرچیزی که به آنها نزدیک شود آن را می‌بلعند و هیچ چیز از جمله نور نمی‌تواند از آنها خارج شود. همین‌طور است، “چنانچه اندازه مکان یک شیٔ، یعنی مکان L، را کوچک و کوچکتر کنیم. در این‌صورت انرژی متمرکز تا نقطه‌ای افزایش می‌یابد که در آن‌ R بزرگتر از L می‌شود. اما، در این حالتت مکان L در پشت سیاه‌چاله پنهان می‌شود و امکان مکان‌یابی از دست می‌رود.”۱۰

به‌طور خلاصه: وجود گرانش اندازه‌گیری دقیق، در مثال ما مکان در میدان الکترومغناطیسی، را مختل می‌کند. به بیان دیگر، اصل عدم قطعیت با درنظرگرفتن تاثیر گرانش، اندازه‌گیری دقیق و همزمان دو کمیت مکمل را امکان‌پذیر نمی‌داند. یعنی، L را می‌توان فقط تا یک حداقل (L = R) کوچک کرد و نه تا اندازه دلخواه. حداقل اندازه‌ای که یک ذره کوانتومی می‌تواند در آن متمرکز شود، بدون این‌که افق خودش آن را بپوشاند، برابر با طول پلانک (۳۵–۱۰ ˑ ۱٫۶۱۶متر) است.

 

نتیجه 

بررسی‌های فضازمان کوانتومی نشان می‌دهند: ۱. یک حداقل طول در مقیاس پلانک وجود دارد. ۲. فیزیک فضازمان کوانتومی به‌عنوان بخش جدیدی از فیزیک، از نوع فیزیک کلاسیک و یا کوانتومی مفروض بر فضازمان نیست. ۳. اصل عدم قطعیت، بدون ملاحظه گرانش صحت ندارد. ۴. نظریه‌ جدید می‌تواند شیوه‌ی شکل‌گیری فضازمان را نشان دهد و میان دو نظریه، نسبیت عام و کوانتومی، هماهنگی و وحدت ایجاد کند.

 

مراجع:

  1. https://de.wikipedia.org/wiki/Roger_Penrose
  2. https://science.psu.edu/news/abhay-ashtekar-honored-einstein-prize
  3. https://en.wikipedia.org/wiki/Lee_Smolin
  4. https://de.wikipedia.org/wiki/Edward_Witten
  5. Hassan Bolouri, Classical spacetime

۵. حسن بلوری، ’فضازمانِ کلاسیک‘، منتشر شده در سایت‌های پارسی‌زبان، ماه اکتبر سال ۲۰۲۵

  1. Albert Einstein, Grundlagen der allgemienen Relativitätstheorie, Annalen der Physik,49, S. 769-822
  2. Hassan Bolouri, The mystery of spacetime, relativity and quantum

۷. حسن بلوری، ’معمّای فضازمان‘، منتشر شده در سایت‌های پارسی‌زبان، ماه ژوئن سال ۲۰۲۵

  1. Hassan Bolouri, The limitations of our knowledge of spacetime

۸. حسن بلوری، ’محدودینت‌های شناخت فضازمان‘، منتشر شده در سایت‌های پارسی‌زبان، ماه اوت سال ۲۰۲۵

  1. Hassan Bolouri, Symmetry: the key to recognizing the cosmos

۹. حسن بلوری، ’تقارن: کلید شناخت کیهان‘، منتشر شده در سایت‌های پارسی‌زبان، ماه مارچ سال ۲۰۲۰

  1. Carlo Rovelli and Francesca Vidotto, Covariant Loop Quantum Gravity, Cambridge University Press, United Kingdom, 2020, S. 65
  2. Landau, L, D., and Peierls, R Erweiterungdes Unbestimmtheitsprinzips für die relativisti- sche Quantentheorie, Zeitschrift für Physik, 1931, ۶۹, ۵۶-۶۹
  3. Bohr, N., and Rosenfeld, L., Det Kongelige Danske Videnskabernes Selskabbs. Mathematiks-fysike Meddeleser, ۱۲, ۶۵
تاریخ انتشار : ۲۰ آذر, ۱۴۰۴ ۹:۵۰ ب٫ظ
لینک کوتاه
مطالب بیشتر

نظرات

Comments are closed.

تجاوزگری و مداخله‌جویی آمریکا، اسراییل و غرب دشمنی با مردم با هدف تضعیف و تجزیهٔ ایران است!

ایران نه میدان تسویه‌حساب قدرت‌های خارجی است و نه ملک شخصی حاکمیتی استبدادی. نیروهای مردمی، میهن‌دوست و مترقی ایران تمام تلاش خود را خواهند کرد تا اعتراضات برحق مردم ایران علیه سرکوب، فقر، تبعیض و بی‌عدالتی، دستاویز مداخلهٔ خارجی، تهدید نظامی یا توطئه‌های بی‌ثبات‌ساز تلفیقی بیگانگان و تمامیت‌خواهان مخلوع قرار نگیرد. سرنوشت ایران تنها باید به دست مردم آن رقم بخورد.

ادامه »

تجربۀ خونین بازتولید استبداد و مصادرهٔ مبارزات مردمی در تاریخ معاصر ایران

اگر قرار است این‌بار سرنوشتی متفاوت رقم بخورد، باید چرخهٔ تاریخی مصادرۀ مبارزات مردم از سوی نیرویی اقتدارگر و استقرار استبدادی تازه شکسته شود. ایران امروز تنها زمانی می‌تواند مبارزهٔ خود را به ثمر برساند که با تکیه بر جامعهٔ مدنی مستقل، مطالبات مسالمت‌آمیز و مطالبه‌محور خود را پی بگیرد. جامعهٔ ما هوشیارتر از آن است که با وجود خشمِ برحق ناشی از نادیده‌گرفته‌شدن، وعده‌های بی‌پایه و متکی بر مداخلهٔ بیگانه را بنیان مبارزات حق‌طلبانه‌اش قرار دهد. تجربه‌های تلخ و خونین تاریخ معاصر ایران گواه آن است که صرفاً «نه» گفتن کافی نیست

مطالعه »

وسوسهٔ پیروزی‌های سریع: وقتی قدرت، خطرناک‌تر از شکست می‌شود

شهناز قراگزلو: ربودن نیکولاس مادورو، رئیس‌جمهور ونزوئلا، در روایت رسمی دولت ترامپ نه فقط یک پیروزی قاطع، بلکه نمونه‌ای ایده‌آل از شیوه‌ای تازه برای اعمال قدرت معرفی می‌شود؛ شیوه‌ای که قرار است بارها و در نقاط مختلف جهان تکرار شود. این عملیات در کنار ترور قاسم سلیمانی در سال ۲۰۱۹ و حمله به تأسیسات هسته‌ای ایران در سال گذشته قرار می‌گیرد؛ اقداماتی که وجه مشترکشان سرعت، دقت و پرهیز از جنگ‌های فرسایشی بوده است.

مطالعه »

اهریمن‌سازی از چپ و کنش ما

یک همگرایی ایدئولوژیک طولانی‌مدت بین رسانه‌های قدرتمند و تحت حمایت خارجی و جریان‌های تأثیرگذار در درون حاکمیت و رسانه های وابسته به آنها وجود داشته است که هر دو، اهریمن‌سازی چپ و نسبت دادن مسئولیت مشکلات ایران به آن را مفید یافته‌اند. خشم عمومی از نابرابری، فساد و بی‌عدالتی اقتصادی بسیار واقعی است، اما این خشم به طور کامل با حمایت از جایگزین‌های سوسیالیستی یا برابری‌خواهانه همخوانی ندارد.

مطالعه »
شبکه های اجتماعی سازمان
آخرین مطالب

پرستو فروهر؛ دادخواهی، تعقل مدنی و نه به بازتولید خشونت

اطلاعیه شورای سردبیری کار – رونمایی سامانه کار بین‌المللی به زبان‌های دیگر…

رنج انباشته

نبردی که بهایش جان مردم بود

*درها را بسته‌اند*

کتاب “زندگی عیسی” نقد مسیحیت بود.